skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chiu, Alec"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kakulapati, Vijayalakshmi (Ed.)
    Recruiting, training and retaining scientists in computational biology is necessary to develop a workforce that can lead the quantitative biology revolution. Yet, African-American/Black, Hispanic/Latinx, Native Americans, and women are severely underrepresented in computational biosciences. We established the UCLA Bruins-in-Genomics Summer Research Program to provide training and research experiences in quantitative biology and bioinformatics to undergraduate students with an emphasis on students from backgrounds underrepresented in computational biology. Program assessment was based on number of applicants, alumni surveys and comparison of post-graduate educational choices for participants and a control group of students who were accepted but declined to participate. We hypothesized that participation in the Bruins-in-Genomics program would increase the likelihood that students would pursue post-graduate education in a related field. Our surveys revealed that 75% of Bruins-in-Genomics Summer participants were enrolled in graduate school. Logistic regression analysis revealed that women who participated in the program were significantly more likely to pursue a Ph.D. than a matched control group (group x woman interaction term of p = 0 . 005 ). The Bruins-in-Genomics Summer program represents an example of how a combined didactic-research program structure can make computational biology accessible to a wide range of undergraduates and increase participation in quantitative biosciences. 
    more » « less
  2. Abstract Background Large medical centers in urban areas, like Los Angeles, care for a diverse patient population and offer the potential to study the interplay between genetic ancestry and social determinants of health. Here, we explore the implications of genetic ancestry within the University of California, Los Angeles (UCLA) ATLAS Community Health Initiative—an ancestrally diverse biobank of genomic data linked with de-identified electronic health records (EHRs) of UCLA Health patients ( N =36,736). Methods We quantify the extensive continental and subcontinental genetic diversity within the ATLAS data through principal component analysis, identity-by-descent, and genetic admixture. We assess the relationship between genetically inferred ancestry (GIA) and >1500 EHR-derived phenotypes (phecodes). Finally, we demonstrate the utility of genetic data linked with EHR to perform ancestry-specific and multi-ancestry genome and phenome-wide scans across a broad set of disease phenotypes. Results We identify 5 continental-scale GIA clusters including European American (EA), African American (AA), Hispanic Latino American (HL), South Asian American (SAA) and East Asian American (EAA) individuals and 7 subcontinental GIA clusters within the EAA GIA corresponding to Chinese American, Vietnamese American, and Japanese American individuals. Although we broadly find that self-identified race/ethnicity (SIRE) is highly correlated with GIA, we still observe marked differences between the two, emphasizing that the populations defined by these two criteria are not analogous. We find a total of 259 significant associations between continental GIA and phecodes even after accounting for individuals’ SIRE, demonstrating that for some phenotypes, GIA provides information not already captured by SIRE. GWAS identifies significant associations for liver disease in the 22q13.31 locus across the HL and EAA GIA groups (HL p -value=2.32×10 −16 , EAA p -value=6.73×10 −11 ). A subsequent PheWAS at the top SNP reveals significant associations with neurologic and neoplastic phenotypes specifically within the HL GIA group. Conclusions Overall, our results explore the interplay between SIRE and GIA within a disease context and underscore the utility of studying the genomes of diverse individuals through biobank-scale genotyping linked with EHR-based phenotyping. 
    more » « less